TS5353 – Enterprise Software Architecture Design
Mark Lindquist
mrkcl@msn.com
Unit 1 Assignment 1

Discovering Value
Software Architecture has been defined as “…the structure or structures of the system, which comprise software components, the externally visible properties of those components, and the relationships among them” (Bass 98). Equally important as this definition is the importance of software architecture to software systems. Software architecture became vital to software systems when these systems began to grow to enormous sizes and complexities, due to ever increasing power and evolution of the computers they reside and operate in.
To counter the complexities and to simply understand and follow the development of software systems, software architectures became the foundation of the development process. That is not to say that software architectures are a process phase in the software development life cycle (SDLC) but are the artifact that guides the SDLC phases in an iterative manner so as to meet the requirements of the product.

Software architecture is vital to software systems for three reasons.
1. It is a vehicle for communication amongst stakeholders. As an abstraction of a software system, software architectures become necessary for understanding the system as well as communication of the system complexities to all stakeholders
2. It is the manifestation of earlier design decisions. By understanding early design decisions, through the architecture, correct or best practices (Requirements) can be defined over less efficient ones while system qualities can be defined as a result.
3. It is a reusable, transferable, abstraction of a system. By establishing an architectural model of the system, an abstract view can be then used throughout the different phases of the SDLC to help understand structures and relationships.
The definition of software architectures, then, is to emphasize that software architecture is the abstraction of a software system that, most importantly, guides the SDLC in an efficient and stable development process. Software architecture must be at the forefront of the development process, it being the grounding conceptual view that the developers, designers, testers, and so on use to effectively execute their tasks. It is the foundational mechanism that produces a quality product and, hence, a competitive advantage for an organization.
But to understand software systems by way of the architecture is but one view of the system under observation. Software architecture’s importance is also about providing each and every stakeholder with interest in the software a different view so individual stakeholders can see the system in an understandable context.
The different ways to view a software system, provided by the architecture, are only limited by the various stakeholders with vested interest in the software. From Clements Evaluating Software Architectures we are presented with five views of a system through which different stakeholders view the system in different ways.

1. Functional View: Every software system consists of its components and the functionality and relationship of them which enable the system to have behavior. This behavior is but one view of a software system.
2. Concurrency View: To alleviate concerns with performance, deployment, and availability of a system a concurrency view offers those a view of the different processes and threads that will be created, their communication with each other, and the resources they will share.
3. Code View: This view, what I most relate to, is the view of the programmer. Before a programmer begins coding he will decipher models of object’s behavior and state- classes, properties, methods, and will use this view to implement the system.
4. Development View: This view also used by developers, and others, is a repository for the files and directories that make up the structure of the source code. Modification, maintenance, division of development and testing, and control of configuration management and versions are all concerns of this view.
5. Physical View: This view depicts the hardware structure of a system as it will be deployed. Hardware and system engineers typically use this view to alleviate concerns of system delivery, installation, and upgrades. Performance, availability, scalability, and security are also concerns of this view.
These different views encompass most of the stakeholders that have interests in a given software system. But just as the different views alleviate concerns while analyzing architectures there can be many more stakeholder interests in a system which would present even more views to also separate concerns and build and analyze architecture.
In my studies of software engineering at Capella I have, in numerous courses, been presented with the notion of factors that contribute to the cost of a software system and have come to the conclusion that the number one factor that will bring a system down is to not detect errors early in the SDLC. By detecting errors early in the SDLC costs are mitigated by precluding extensive error remediation later in the project. In other words find and fix bugs early and you save the time and effort of fixing them later when the system is bigger and more complex.
Architecture-centric development can help in this respect as it offers a foundation and structure in which to locate the errors early. At the outset of each phase of the SDLC the architecture can be integrated giving unambiguous vision of the system from the vantage point of the phase aiding in the detection of errors.
For instance in the implementation phase the architecture might include an OOD, established in the design phase, consisting of classes, properties, methods, and the relationships amongst them. This architectural code view offers a clear understanding and vision of the structure of the system at that phase (Implementation). Furthermore it allows the developers to locate and fix errors by way of an evaluation. Thus the architecture of a system aids in the location of and fixing of errors. Located early and the costs are minimized.
Another view, and that presented in the textbook (Taylor p. 26-7), is that requirements gathering should, unlike early theories and observations, consist of predefined architectures which present pre-existing solutions. It states “Without reference to existing architectures it becomes difficult to assess practicality, schedules, or cost” (Taylor p. 27). In defining these solutions as part of a requirements gathering procedure the book states “the role of architecture and solution considerations at the very outset of a development process” (Taylor p. 27), referring to requirements gathering.
Dependencies amongst systems, and on a smaller but no less important scale, dependencies amongst components, are a concern for every software system as it is being developed. Dependencies in both systems- lack of clearly defined boundaries, and components- high coupling- unwanted reliance of one component on another, increases the instability and loss of effectiveness, of not only the system, but of the architecture it exists with.

Opportunities for identifying dependencies are best done through examining the system’s architecture at each phase of the SDLC. Architecture is the principle design decisions made early in the development process. By understanding these early decisions and designs you can control the dependencies which inextricably creep into a system.

By carefully examining the requirements and establishing initial decisions and proposing early designs with early solutions from them you are creating a system’s architecture which will present clearly a conceptual view of the system and any dependencies that may be.
“Requirements do not create value; products do. Successful new inventions are begun on the basis of a potential solution” (Taylor p. 27), referring to development of software products from pre-defined architectures and already proven solutions. Thus, already existing systems and architectural models should define design and development of new areas of software, not the requirements alone. Already proven software provides solutions and models of architecture that are the foundation of new software. The ubiquitous zipper was not invented from the requirement of bringing two sides of apparel together but by evaluating and improving on pre-existing failures.
What I would do to map system requirements to an architectural model is to first discover weather the system is being created according to an already existing architecture or is the system being developed without any predefined and preexistent architectural aid. If, as usually is the case, the requirements are being gathered, with a predefined and preexisting architecture, with accompanying solutions, then the requirements of a new system can be determined by outcomes of the supporting system, providing the outcomes are successes. So a systems requirements and their function within a system is directly related or mapped to the previous systems success.
Knowing this, then, it becomes easy to determine requirements by simply analyzing successes of preceding systems.

High risk for a component is a component that is not achieving its intended purpose according to its requirements laid down in the requirements phase of the SDLC. This risk could be a result of a components not behaving as it should because of faulty coding or a component that has no significance in a system.

Whatever the cause of a high risk component, the architectural model of preexisting systems can be used to identify potential risks before they happen. When a component is at high risk it, for some reason or other, can be costly, lack quality, increase effort in both development and testing, increase schedule, and decrease project functionality. But to identify the risks associated from previous risky components, by way of the architectural vision, is to increase the likelihood of project success.
Software architectures are the foundation that guides a system’s development throughout the SDLC. They provide to the stakeholders knowledge, experience, components, processes, solutions, and techniques to aid in everyone’s discussion and understanding of a given system at any point in time.
References:

Taylor R. N. Medvidovic N. Dashofy E. M. (2010). “Software Architecture – Foundations, Theory, and Practice” Chapter 1, 2.
Clements P. Kazman R. Klein M. (2008). “Evaluating Software Architectures, methods and case studies” Chapter 1
