TS5356 – Advanced Application Development
Mark Lindquist
mrkcl@msn.com
Unit 3 Discussion 1

April 26th, 2010

Design Patterns:

Design patterns are proven solutions to a recurring problem within some context. This statement can be true within many disciplines but in developing object oriented software it is especially true.

The design patterns that provide solutions in designing object oriented software are categorized into Creational, Structural, and Behavioral patterns. These categorizations make it easier for developers to determine which pattern is helpful in their projects. Design patterns are also, or further, categorized into object or class design patterns. Class design patterns deal with classes, subclasses and their relationship. Object design patterns deal with objects and their relationships.
Creational design patterns create objects. Structural design patterns deal with the composition of objects or classes or their structure. Behavioral patterns determine how a class or object “…interact and distribute responsibility” (Gamma, Helm, Johnson, Vlisides). Together with categorizing patterns into object or class patterns, creational, structural, and behavioral patterns make it less complex when determining which pattern is appropriate for a given problem.
In my GradeBook_Final application there are classes for GradeBook, Student, Teacher, Staff, Courses, Assignments, and Grades. Each of these classes has behavior which instantiates concrete subclasses Student, Teacher, or Staff and uses the behavior or methods within these subclasses. A better approach would be to enlist the help of the Factory creational design pattern which would define an interface that the client would program to.
With the Factory design pattern we first define a subclass X in which classes xy, xz, and xc are derived from. See diagram below. You then have a Factory class that decides which derived class is used depending on you needs. Factory chooses which derived class to use through method getClass() and parameters that determine exactly xy, xz, or xc. It returns an instance of class X with behavior that you need, xy, xz, or xc. The client knows nothing of the subclasses xy, xz, or xc just the super class X.

[image: image1.emf]X

xy xz xc

*

*

*

*

+getClass()

Factory X

* *

In my GradeBook application I could define sub classes Student, Teacher, and Staff from class Person, for instance, that behave differently according to my needs. Person would define an interface for the subclasses. I then create a Factory class with operations that determine which subclass, Student, Teacher, or Staff I need in my event handler. The Person class is the more general class and is all I am aware of. Thus you’re programming to an interface not an implementation. This makes a program more flexible and reduces coupling between objects and the client.

[image: image2.emf]Person

Student Teacher Staff

*

*

*

*

+getClass()

Factory Person

* *

References:

Gamma E, Helm R, Johnson R, Vlissides J (1995). “Design Patterns-Elements of reusable Object Oriented Software” Chapter 1, 3.
Cooper J. (1998). “The Design Patterns Java Companion” http://www.javacamp.org/designPattern/ Retrieved April 2010.
_1333512541.vsd
X

xy

xz

xc

*

*

*

*

+getClass()

Factory

X

*

*

_1333513616.vsd
Person

Student

Teacher

Staff

*

*

*

*

+getClass()

Factory

Person

*

*

